
In this article, a word-oriented approximate string match-
ing approach for searching Arabic text is presented. The
distance between a pair of words is determined on the
basis of aligning the two words by using occurrence
heuristic tables. Two words are considered related if
they have the same morphological or lexical basis. The
heuristic reports an approximate match if common let-
ters agree in order and noncommon letters represent
valid affixes. The heuristic was tested by using four
different alignment strategies: forward, backward, com-
bined forward–backward, and combined backward–
forward. Using the error rate and missing rate as
performance indicators, the approach was successful in
providing more than 80% correct matches. Within the
conditions of the experiments performed, the results
indicated that the combined forward–backward strategy
seemed to exhibit the best performance. Most of the
errors were caused by multiple-letter occurrences and
by the presence of weak letters in cases in which the
shared core consisted of one or two letters.

Introduction

Approximate string matching is a fundamental method of
text searching. Assessing similarity between different but re-
lated words (such as inflections of the same word root) can
be important in various areas of text processing, especially
in the area of free-text information retrieval. Approximate
string matching techniques are capable of finding word vari-
ants (Pirkola, Keskustalo, Leppanen, Kansala, & Jarvelin,
2002). But, as the term approximate indicates, because the
links established between terms or concepts are not based on
exact matching, as defined by pattern matching algorithms,
retrieval is inevitably probabilistic. However, the naive
approach of recording a match between two words only if
they are fully identical often produces a baseline performance
level from which significant improvement can be sought
(Gu & Berleant, 2000).

Traditionally, approximate string matching has been
carried by out using lexically based conflation techniques, by
which words are stemmed to join different word variants that
might be considered semantically related under certain con-
ceptual assumptions. A stemming algorithm is a computa-
tional procedure that seeks to reduce all words with the same
stem to a common form, usually by stripping each word vari-
ant of its derivational and inflectional suffixes (Ekmekcioglu,
Lynch, Robertson, Sembok, & Willett, 1996). The results
largely depend on the technique being used and the inherent
lexical structure of the language under consideration. Two
words might have the same lexical base but not necessarily
have similar semantic contents.

The term approximate string matching has frequently
been used in the literature to refer to a class of pattern match-
ing techniques, by which K errors are allowed between a pat-
tern and a text substring. It consists of finding all substrings
of the text that have at most K errors with the pattern as
determined by an edit distance. The edit distance between
two strings a and b is the minimal number of edit operations
needed to transform a into b. The edit operations allowed are
deleting, inserting and replacing a character (Baeza-Yates &
Navarro, 1996).

Another class of approximate matching techniques has
used N-gram measures to determine the similarity between a
pair of strings. In its simplest form, the similarity between a
pair of words is a function of the number of N-character
substrings that they have in common. Dice’s similarity
coefficient is usually used to calculate the similarity value
(Kosinov, 2001). N-gram techniques group words that
contain identical character substrings of length N on the basis
of ranking and using a similarity threshold of a given value.

The three classes of techniques differ in their underlying
theoretical assumptions and application orientations.
Whereas stemming algorithms are word-oriented and lan-
guage dependent, the other two classes can work with both
words and sequences of substrings and apply language-
independent statistical measures and algorithms. In natural
language processing and information retrieval, word-based
analysis is more natural and appropriate. These techniques

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 56(14):1504–1511, 2005

Word-Oriented Approximate String Matching Using
Occurrence Heuristic Tables: A Heuristic for Searching
Arabic Text

Suleiman H. Mustafa
Department of Computer Information Systems, Yarmouk University, Irbid, Jordan. E-mail: smustafa@yu.edu.jo

Received March 10, 2004; revised October 8, 2004; accepted October 8,
2004

© 2005 Wiley Periodicals, Inc. • Published online 9 September 2005 in
Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/asi.20244

have been used for these applications, and their performance
has been assessed and compared in a number of ways (Zobel
& Dart, 1995; Baeza-Yates & Navarro, 1997).

A large body of research has analysed these three classes
of approximate matching techniques. A review of the litera-
ture of this research is beyond the scope of this article, but it
is important to note that their applications have found their
way to the literature of Arabic string matching and text
searching. A study by Mustafa (2003), has reported that
morphology-driven string matching, in which the word-
based matching process is supposed to be driven by an auto-
matically computed root, offered more than 90% valid string
matching results. Several other studies have addressed
word-based string matching using N-gram techniques (De
Roeck & Al-Fares, 2000; Mustafa & Al-Radaideh, 2004).
The empirical results indicate that these techniques appear to
be highly efficient under certain conditions and for certain
applications.

The string matching technique being presented in this
article is word oriented. It is based on single textual words
rather than on random sequences of substrings. It takes
words of a text as independent units for matching and
assumes an underlying lexical structure that has to be con-
sidered in matching a query word with the text. Formally
stated, given a text T of n words and a query word Q of
length m, both being sequences of letters from a natural lan-
guage alphabet �, find the set of morphological and lexical
variants of Q (denoted FQ) in T along with the multiple
occurrences of FQ.

Word-to-word parallelism based on occurrence heuristic
tables as used in this research draws upon ideas from exact
pattern matching algorithms and approximate string match-
ing techniques. The occurrence heuristic table is simply an
array of the same size as the alphabet for storing a given tex-
tual word. It is used for establishing the required parallelism
between a source word (presumably from a text) and a target
word. The idea of using this type of string matching struc-
ture was introduced by Boyer and Moore (1977) in their
well-known algorithm for pattern matching (which became
known as the Boyer–Moore algorithm). Later the idea was
used by Baeza-Yates and Perleberg (1996) for approximate
pattern matching. In both algorithms, the pattern used was a
random sequence of characters.

A Matching Heuristic

A General Model

Word-oriented string matching is based on a general
model (Figure 1), in which a given word Q is looked up in a
given text T by matching Q with every word W in T. In
approximate matching, a match is reported if Q and W are
similar at a certain level of similarity. The intended final tar-
get is a set of all similar words in T. The measure of similarity
can be determined by means of a language-independent sta-
tistical procedure or by means of morphology-driven align-
ment. The heuristic presented here adopts the latter approach.

The kind of heuristic used determines both the accuracy
and the completeness levels of the set of results obtained. Let

U denote the set of all words in T
ST denote the subset of all words that are similar to Q in T

(ST � U)
SR denote the subset of words judged by the heuristic to be

similar to Q (SR � U).

The best we can aim for is SR � ST, which is rarely the
case in approximate matching. The normal case is similar to
the situation shown in Figure 2. Some of the elements of
ST might be skipped but others from outside ST might be
erroneously inserted into SR.

Occurrence Heuristic Tables

The matching process relies on two major data represen-
tations: The first is a hashed parallel-array structure for rep-
resenting the letters of a pair of words, Q and W (Figure 3);
the other is a parallel-array structure for distinguishing
shared from nonshared letters between Q and W (Figure 4).

The first representation is intended to draw a correspon-
dence between a query word Q and a word W from the text
T. It is a parallel-array structure of the same size as the Ara-
bic alphabet. As shown in Figure 3, the two components of
the structure (aQ and aW) are indexed by the Unicode collat-
ing sequence of the Arabic alphabet (which has its basis in
ASMO-49). Given, for instance, the two Arabic words,

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2005 1505

Word n

W

…
 …

 …

Word3

Word 2

Text
Word1

Text
Word n�1

Approximate
Matching
Heuristic

Q

Query
Word

Set of
Results

T

Text

Text

Text

FIG. 1. A general model of word-oriented string matching.

U

SR

ST

FIG. 2. The actual subset of words similar to the query word (ST) and the
recognized subset as determined by a heuristic.

1506 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2005

YLBS (wearing) and MLABS (clothes),1 when the letters of
each word are hashed to their proper locations, we can tell
that the two words have three letters in common, L, B, and S,
since these three letters hash to the same locations.

The second data representation, on the other hand, is
intended to distinguish shared from nonshared letters
between a query word Q and a word W from the text T. A
zero value in some position P in XQ indicates that the letter
Q[P] is not available in W. By the same token, a zero value
in some position P in XW indicates that the letter W[P] is not
available in Q. In either case, a nonzero value indicates oth-
erwise. Given that the shared letters of Q and W match in
order, XW and XQ are taken as a basis for making the neces-
sary checking on word affixes in W and Q. In the same
example, XQ and XW take the values indicated in Figure 5.

To determine that the two words are related, we must deter-
mine that the letters indicated by zero values are legal affixes.

The Word Matching Process

In order to determine that W is probably related to Q, there
are three conditions that must be satisfied: The two words
must have a number of letters in common, the common let-

ters must agree in order, and the nonshared letters must form
valid affixes in the language under consideration. Figure 6
gives the basic framework of the word matching heuristic.

To satisfy the first condition, the process of matching Q
with W starts by mapping the letters of Q to their correspond-
ing positions in aQ. Similarly, as the text T is being tokenized,
the letters of W must be mapped to the proper positions in aW.
In doing so, we can make the necessary mapping between Q
and W, to determine which letters are common to both.

To maintain the proper order of the common letters in
both Q and W, two temporary strings are used: CQW (i.e., the
common letters of Q in W) and CWQ (i.e., the common letters
of W in Q). Using the example given in the previous section,
these two strings are as follows:

(CQW � LBS and CWQ � LBS)2

Two words may have two or more letters in common but
not necessarily in the same order. If, for instance, W refers to
the textual word MSLUB3 (stolen), Q and W have three com-
mon letters that are not in the same order, as follows:

(CQW � LBS and CWQ � SLB)4

…

�1 �2

�1 �2

�n�1 �n

�n�1 �n

0 0 0 0�Q

�W

Q

…0 0 0 0W

FIG. 3. aQ and aW form a parallel-array structure for mapping the corre-
spondence between the letters of a pair of words, Q and W. The subscript ai

represents the Unicode collating sequence of the Arabic alphabet.

1

0

2

0 …

n

0XW

1

0

2

0 …

m

0XQQ

W

FIG. 4. XQ is an array showing the letters of Q that are not found in W, and
XW is an array showing the letters of W that are not found in Q. The sub-
script refers to the proper order of letters in Q or W.

1 , which is composed of four letters and pronounced YALBAS,
with A a short vowel, and , which is composed of five letters and
pronounced MALABIS, with first A and I short vowels, and the second A a
long vowel.

XW

1

0

2

1

3

0

4

1

5

1

XQ

1

0

2

1

3

1

4

1

FIG. 5. XQ and XW for representing the similarity between YLBS and
MLABS.

1. Get a query word
Initialize �Q to zeros, and XQ to zeros
Input a query word Q
For each letter in Q increment its position in �Q

2. Repeat
2.1 Get the next textual word W

Initialize �Q and XW to zero, and the temporary strings
CQW and CWQ to null

Extract the next word W from the text T
2.2 Find the letters shared between Q and W

For each letter in W (except alif), if �Q[Wi] > 0 then
Append Wi to CWQ (i.e., maintain the order of these

letters in W) and Inc XW[I]
For each letter in Q (except the long-vowel letter alif),

if �W[Qi] > 0 then
Append Qi to CQW (i.e., maintain the order of these

letters in Q) and Inc XQ[I]
2.3 Match CQW with CWQ. If MATCH (CQW , CWQ) then

Check query affixes based on the zero values in XQ

If the letters corresponding to zero values (if any) in XQ

formvalidprefixes, suffixes,and infixes thenQAFX is true
Check word affixes based on the zero values in XW

If the letters corresponding to zero values (if any) in XW

formvalidprefixes, suffixes,andinfixes thenWAFX is true
2.4 If MATCH and QAFX and WAFX then

add W to the list of match results
Until no more words in T

FIG. 6. A matching heuristic based on within-word parallelism.

2That is, , the common letters and for

both cases.
3That is, which is composed of five letters and pro-

nounced MASLOUB.
4 That is, for the first case and for the second.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2005 1507

A matching common core in a pair of words (e.g., CQW �
CWQ) does not necessarily indicate that the two words are
morphologically related. Therefore, the next step is to
determine that the difference (if any) between Q and W is
caused by the presence of affixes. We do so by referring
to XQ and XW. Using the example given in Figure 5, we can
see that

• Q has a one-letter prefix that does not exist in W (i.e., the let-
ter ya, Y), and

• W has a one-letter prefix (i.e., the letter meem, M) and a one-
letter infix (i.e., the long-vowel letter alif, A) that are not
found in Q.

These noncommon letters are checked against the appro-
priate set of Arabic affixes.5 If all of them are valid affixes,
we can conclude that W is morphologically related to Q and
hence we have an approximate word-based match.

It is important to note that step 2.2 in the heuristic can be
carried out in two different ways: forward parallelism and
backward parallelism. In the first method, XQ and XW are
constructed by following the natural order of letters in a
given word (i.e., starting from the first letter and moving for-
ward until the last letter). In the other method, the paral-
lelism between Q and W is derived by tracing them in re-
verse order (i.e., starting from the last letter and moving in
reversed order to the first letter). Consider again the example
in Figure 5. In forward parallelism, the construction of XQ,
for instance, follows this order: XQ[1], XQ[2], . . . , XQ[4]. In
backward parallelism, the construction of XQ, follows re-
versed order: XQ[4], XQ[3], . . . , XQ[1]. The advantage of
using either way or combining the two will be shown in the
next section.

Another note that has to be made here concerning step 2.2
is the exclusion of the letter alif from the common core of
Q and W as represented by CQW and CWQ. The decision to
remove it was made because the lexical structure of the
majority of Arabic textual words involves one or more oc-
currences of this letter. In some cases, it represents a long
vowel; in others it performs a suffixing or prefixing function.
After some experimentation, it was found that ignoring the
alif would have a significant impact on the results produced
by the heuristic.

Experimental Testing

The Data Set

The work presented in this article is based on a corpus of
Arabic textual data that represents different subject areas
and on a set of textual query words that have been selected
randomly from the corpus. The corpus is taken from the
author’s own experimental data sets, which have been used
in previous studies. Each query word has been carefully

checked within the corpus, and its morphological and lexical
variants and their multiple occurrences have been deter-
mined manually. The list of query words, which is too long
to be presented here, comprised 1,500 (of 6,490 in the cor-
pus) distinct variants and 7,255 repeated occurrences, with
an overall average of about 5 occurrences per word. It was
important to make sure that the list represented all types of
verbs and nouns and several affixation patterns. Table 1
shows a sample of the list of query words used in the exper-
iments as explained in the following sections.

Experiments

The word matching heuristic outlined previously has
been exposed to four experiments, each of which represents
a different strategy: two major strategies (which are referred
to as the forward strategy and the backward strategy) and
two variations on them (which are referred to as the
combined for–back strategy and the combined back–for
strategy).

The forward strategy represents the normal approach of
building a matching parallelism between a pair of words. In
the first experiment, XQ and XW were constructed by follow-
ing the natural order of letters in a given word (i.e., starting
from the first letter and moving forward to the last letter).
Figure 7 shows how this strategy was implemented in
Pascal code. When the procedure is called for a given word
W, the list of parameters takes the form (W, CWQ, aQ, XW).
When, on the other hand, the procedure is called for a given
query word Q, the list of parameters takes the form (Q, CQW,
aW, XQ).

Consider, for instance, a query word such as ASALIBHA6

and the textual word ASLUB7 (with the first A, in both words,
not a long vowel). Applying the forward approach gives us
the representations shown in Figure 8, in which CQW and
CWQ have four common letters (i.e., A, S, L, B).

The backward strategy, on the other hand, scans a given
word in reversed order. Hence, XQ and XW were constructed

5 For efficiency purposes, binary search is used for accessing the list of
prefixes and suffixes.

6 That is, , which is composed of eight letters and pronounced
ASALIBOHA.

7That is, , which is composed of five letters and pronounced
OSLOUB.

TABLE 1. A sample of the query words used in the study along with their
variants and occurrences in the textual corpus.

Relevant Repeated
Word variants occurrence

amwal 15 53
aliskan 9 32
tadhweer 24 99
damanah 9 21
lilmojtama’ 52 369
walfonoun 10 22
wasalahyatoha 18 37

1508 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2005

in the second experiment starting from the last letter.
Figure 9 shows how this strategy was implemented in Pascal
code. The difference between the code in this figure and the
code in Figure 7 appears in only two places as marked by the
comment symbol {*}. The form of procedure call also
remains the same as indicated previously.

For the majority of words, the results of applying both
strategies are the same, as is the case with the example
shown in Figure 8. But consider the textual word ALASLUB8

which is related to the same query word in Figure 7. If we
apply the forward strategy, the matching heuristic fails to
recognize this word W as one of the relevant variants of Q in
the text.

The reason is that this textual word has two occurrences
of the letter lam, L, whereas we have one occurrence of this
letter in the query word. Constructing XQ and XW in forward
direction leads to mapping the first occurrence of lam in W,
thus leaving the second occurrence to take a zero value. Be-
cause the letter lam does not occur as an infix, the forward
matching strategy fails to relate W to Q.

But this is not the case with backward matching. Fig-
ure 10 shows how Q and W are represented in XQ and XW

using the backward strategy. Because the two sets of com-
mon letters match in order, this strategy succeeds in recog-
nizing the word ALASLUB as a relevant variant of the query
word ASALIBHA. The reader should be reminded that
according to the matching heuristic, the long-vowel letter
alif is ignored; hence, a zero value is given for each occur-
rence of this letter in both representations (XQ and XW).

In the third and fourth experiments, a combination of the
forward and backward strategies was used. In the third
experiment, the forward strategy was supplemented by the
backward strategy. In the fourth experiment, the backward
strategy was supplemented by the forward strategy. If a com-
mon core exists between Q and W and the basic strategy fails
to recognize a relationship between the two words, the other
strategy is called in for verification. If both strategies fail, W
is reported as being outside the set of suggested relevant
variants or multiple occurrences of Q in T.

Experimental Results

The results of conducting the four experiments discussed
were analyzed in terms of two major performance parame-
ters: the error rate and the missing rate. Each refers to a dif-
ferent type of incorrect judgment made by the heuristic in
view of the valid relevant word variants in the experimental
data set. The first type is given as a ratio of the number of
erroneous hits to the total number of words suggested by the
heuristic as relevant variants. The second type is a ratio of
the number of actual relevant word variants that were not
recognized by the heuristic to the total number of actual
variants in the data set.

Table 2 presents the results of this error analysis in terms
of distinct word variants along with their multiple

8That is, , which has seven letters and is pronounced
ALOSLOUB.

Procedure forward (token: toktype; var C:
toktype; var �: � type; var X: xtype);

var i: integer;
begin
for i := 1 to LEN(token) do
if �[token[i]] > 0 then

begin
if(token[i] <> '|') then

begin
inc(X[i]);
C := C + token[i]; {concatenate}
end;

dec(�[token[i]])
end;

end;

FIG. 7. Using the forward strategy to implement Step 2.2 in the heuristic.

A S L B

1

1

2

1

5

0XQ

8

0

6

1

3

0

4

1

7

0

XW

1

1

2

1

3

1

4

0

5

1

FIG. 8. Representing the two words ASALIBHA (XQ) and ASLUB (XW)
using the forward strategy.

Procedure backward (token: toktype; var C:
toktype; var �: � type; var X: xtype);

var i: integer;
begin
for i := LEN(token) down to 1 do {*}
if �[token[i]] > 0 then

begin
if(token[i] <> '|') then

begin
inc(X[i]);
C := token[i] + C; {*}
end;

dec(�[token[i]])
end;

end;

FIG. 9. Using the backward strategy to implement Step 2.2 in the heuristic.

A

XW

1

0

2

0

3

1

4

1

5

1

6

0

7

1

1

1

2

1

5

0XQ

8

0

6

1

3

0

4

1

7

0

L BS

FIG. 10. Representing the two words ASALIBHA (XQ) and ALASLUB (XW)
using the backward strategy.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2005 1509

occurrences in T. It shows the performance of the four strate-
gies performed in respect to the two measures: error rate and
missing rate. Given the forward matching strategy, for
instance, 0.17 of the distinct items suggested by the strategy
were not in the valid set of word variants. This value is
represented by 0.27 multiple occurrences in the data set.
Taking a balanced combination of both measures, the com-
bined for–back strategy (i.e., forward supplemented by
backward) seems to exhibit the best performance in compar-
ison to the other strategies.

A judgment made by the matching heuristic to consider
W morphologically related to Q does not necessarily hold
true for all cases. A pair of words might be related merely
by coincidence. Consider, for example, the case of W �
ALBSTAN9 (farm). This word has three letters in common
with Q (i.e., CWQ � LBS) and by coincidence, the remain-
ing four letters can be treated by the matching heuristic as
valid affixes. According to the heuristic, this word is

judged as morphologically related to YLBS, whereas it ac-
tually is not.

Table 3 presents the results judged as being relevant
approximate matches by the heuristic distributed over three
categories of common core size: common � 1 to 2 letters,
common � 3 to n � 1 and common � n (i.e., exact match).
Using the same distribution, Table 4 gives for each strategy
the number of valid cases of the cases in Table 3 and their
distribution, as a percentage, over the three common core
categories.

Further analysis of the results indicates that the majority
of the erroneous cases that were reported by the heuristic as
relevant variants belong to a category of words that have a
common core of one or two letters (i.e., smaller than the size
of a trilateral Arabic root). As Table 5 indicates, about 60% or
more of the invalid variants (depending on the strategy used)
fall into this category. Note that when the common core is
equal to N (i.e., exact match), the value of nonrelevant be-
comes zero for all strategies. As we examine the cases in
which we have the majority of errors, we find that most of
these cases represent words that have weak letters: letters that
are known to be subject to different types of transformation.

9That is, , which has seven letters and is pronounced
ALBOSTAN.

TABLE 2. Mean average performance of the heuristic using four strategies, in terms of distinct textual words
and their multiple occurrences in the text T.

Combined Combined
Forward Backward for–back back–for

Performance Distinct Multiple Distinct Multiple Distinct Multiple Distinct Multiple

Error rate 0.17 0.27 0.14 0.22 0.15 0.20 0.19 0.25
Missing rate 0.35 0.44 0.16 0.24 0.13 0.09 0.12 0.22

TABLE 4. Distribution of valid relevant items (as distinct textual words) based on the common core for Q and W.

With common With common Exact match

Relevant
core � 1 or 2 core � (3 to N � 1) common core � N

Strategy total Relevant Percentage Relevant Percentage Relevant Percentage

Forward 1,004 78 7.8 827 82.4 100 10.0
Backward 1,300 102 7.8 1,098 84.5 100 7.7
For–bak 1,352 105 7.8 1,147 84.8 100 7.4
Bak–for 1,360 125 9.2 1,134 83.4 100 7.4

TABLE 3. Distribution of items (as distinct textual words) judged by the heuristic as being relevant on the basis of the core of
letters common to Q and W.

With common With common Exact match
core � 1 or 2 core (3 to N�1) common core � N

Strategy Grand total Total Percentage Number Percentage Number Percentage

Forward 1,206 219 18.2 887 73.5 100 8.3
Backward 1,518 262 17.3 1,156 76.2 100 6.6
For–bak 1,595 273 17.1 1,222 76.6 100 6.3
Bak–for 1,688 322 19.1 1,266 75.0 100 5.9

1510 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2005

Discussion

As we examine the technique adopted in this research and
the empirical results presented so far we can make a number
of observations: The first is that the use of occurrence tables
provides an efficient way of finding the common core
between a pair of words. However, computing the distance
between a pair of words is sensitive to the lexical structure of
words. A large number of errors of judgment made by the
heuristic were caused by the presence of multiple-letter
occurrences that are introduced by prefixes or suffixes.

Words that have different letters are expected to exhibit a
different level of performance, but this condition is not nor-
mal. A relevant example in this context is that Arabic dictio-
naries are organized on the basis of roots, an organization
that raises the following question: Does it make a difference
if we start by removing candidate suffixes and prefixes from
the pair of words being matched (i.e., Q and W) and then
apply the matching heuristic presented in this study? This
question is worth considering in further research.

Another observation that has to be made relates to an im-
plied assumption about affixes: that affixes are equally likely
to occur in their proper lexical positions in any word. Al-
though this assumption might be practically true for the ma-
jority of words that have a matching common basis, in some
cases this assumption led to the erroneous results, especially
when the common core was one or two letters. A recent un-
published investigation by the author indicated that more
than 60% of Arabic textual words involve valid prefixes or
suffixes. We should add to that the fact that prefixes and suf-
fixes can be combined to compose longer affixes. Given that
point, considering nonmatched letters as valid affixes might
degrade the matching process.

A third observation that should be made relates to the
type of words that are considered relevant variants of a given
query word. The concept of relevance, as applied in this
study, is root based. A textual word is considered a relevant
variant of a given query word if the two words are morpho-
logically related. Although the searching technique pre-
sented here is textual anyway and, as in all text searches, has
no semantic component, the morphological relevance issue
might raise the following question at the application level in
information retrieval: Do all words that are morphologically
related necessarily have similar semantic content?

This question involves a philosophical and debatable
issue because it has no definite answer. In some cases, the

semantic link between different forms of the same root is
quite strong. In some others, the link cannot be clearly iden-
tified. For information retrieval applications, the answer de-
pends on the levels of recall and precision. The closer we get
to the root in building hyperlinks, the higher is the expected
level of recall and the lower is the precision. As far as the
heuristic approach of this study is concerned, the matching
ideas presented here can still be used for stem-based match-
ing as well. In this case, a modification of the part that deals
with affixes in the heuristic is required.

Finally, as we consider the complexity of a word-based
approximate matching method, as presented in this article,
we should note that its efficiency is influenced by a number
of factors. The first is the number of words in the text T,
which should be extracted and then matched with the query
word Q, and the word length, which is on average about five
Arabic letters. The second factor is the type of data struc-
tures used in the matching heuristic and the way they are ac-
cessed. The heuristic relies on three basic structures:

1. a, an array structure indexed by the alphabet as deter-
mined by the collating sequence in the standard character
set

2. X, an array structure indexed by the positions of letters in
the pair of words being matched

3. AFX, a sorted list of prefixes and suffixes accessed by
using binary search

The number of direct accesses to a and X is determined
by the number of letters in a given word; access to AFX is
determined by the presence or absence of a prefix or a suffix
in the word being processed.

The third factor is the mode by which letters that are com-
mon to the pair of words (W and Q being matched) are com-
pared. The heuristic matches W and Q on the basis of shared
letters as represented by the two temporary strings: CQW

(i.e., the common letters of Q in W) and CWQ (i.e., the com-
mon letters of W in Q). The comparison of CQW and CWQ is
carried out by using the string operation provided by the
given programming language.

Given these three parameters, the performance of the
heuristic is almost comparable to that of the classic brute-
force solution to the linear searching problem, which is esti-
mated at O(mn), where n refers to the size of T and m refers
to the length of the query pattern Q. Considering the fact that
an approximate matching approach to word-based string

TABLE 5. Distribution of nonrelevant items (as distinct textual words) according to the core of letters common
to Q and W.

With common With common

Total
core � 1 or 2 core � (3 to N�1)

Strategy nonrelevant Nonrelevant Percentage Nonrelevant Percentage

Forward 201 141 70.1 60 29.9
Backward 218 160 73.4 58 26.6
For–bak 243 168 69.1 75 30.9
Bak–for 329 197 59.9 132 40.1

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2005 1511

matching has a broader objective than that of exact matching
techniques, the lower-level efficiency of inexact matching
techniques is justifiable. An important feature of the tech-
nique described in this article, in terms of efficiency, is its
reliance on heuristic tables that are accessed directly as
described earlier. Likewise, the access of affixes is kept at
the minimal level of execution cost.

Conclusion

This article reports the results of applying a heuristic
approach for approximate word-based matching. The match-
ing heuristic presented here was applied to a set of Arabic
data. An underlying rationale of the research was that word-
based approximate matching can be performed on the basis
of finding the distance between a pair of words on a lexical
basis. Given a core of letters that are common to the source
word and target word, one of the two words can be trans-
formed into the other if the noncommon letters are
determined to be valid affixes.

The results indicate that the method adopted was almost
as efficient as other techniques that have been reported in
respect to Arabic string searching. Of the four word align-
ment strategies that were investigated, the combined
forward–backward strategy appeared to provide the best
performance in terms of the two indicators used: the error
rate and missing rate.

Further research should address some of the ideas dis-
cussed in the previous section. It is possible to modify the
heuristic and apply it to different levels of word stemming.
But the results will be highly influenced by both the type
and the level of stemming used. One can also suggest that
the heuristic presented in this paper be applied to informa-
tion retrieval applications.

References

Baeza-Yates, R., & Navarro, G. (1996). A fast heuristic for approximate
string matching. Proceedings of the Third South American Workshop on
String Processing (WSP’96) (pp. 47–63). Retrieved June 2002, from
http://ftp.dcc.uchile.cl/pub/users/gnavarro/wsp96.2. ps.gz

Baeza-Yates, R., & Navaro, G. (1997). Fast approximate string matching in
a dictionary. Retrieved August 2003, from ftp://ftp.doc.uchile.cl/pub/
users/rbaeza/papers/ vocab.ps.gz

Baeza-Yates, R., & Perleberg, C.H. (1996). Fast and practical approximate
string matching. Information Processing Letters, 59, 21–27.

Boyer, R., & Moore, S. (1977). A fast string matching algorithm. Commu-
nications of the ACM, 20, 762–772.

De Roeck, A.N., & Al-Fares, W. (2000). A morphologically sensitive clus-
tering algorithm for identifying Arabic roots. Proceedings of the 38th An-
nual Meeting of the ACL, Hong Kong. Retrieved June 2003, from
http://citsseer.nj.nec.com /deroeck00morphologically.html

Ekmekcioglu, F., Lynch, M.F., Robertson, A.M., Sembok, A.M., & Willett,
P. (1996). Comparison of N-gram matching and stemming for term con-
flation in English, Malay, and Turkish texts. Text Technology, 6, 1–14.

Gu, Z., & Berleant, D. (2000, October). Hash table sizes for storing
N-grams for text processing (Technical Report, No. 10-00a). Ames: Iowa
State University. Retrieved June 2003, from http://citenseer.nj.nec.com/
347012.html

Kosinov, S. (2001, September). Evaluation of N-grams conflation approach
in text-based information retrieval. InfoTech Oulu: International Work-
shop on Information Retrieval, Oulu, Finland. Retrieved June 2002, from
www.syslab.ceu.hu/~serge/ir200/ir2001_kosinov_s. pdf

Mustafa, S.H. (2003). A morphology-driven string matching approach to
Arabic text searching. The Journal of Systes and Software, 67, 77–87.

Mustafa, S.H., & Al-Radaideh, Q.A.(2004). Using N-grams for Arabic text
searching. Journal of the American Society for Information Science &
Technology, 55(11), 1002–1007.

Pirkola, A., Keskustalo, H., Leppanen, E., Kansala, A., & Jarvelin, K.
(2002). Targeted s-gram matching: A novel n-gram matching technique
for cross- and monolingual word form variants. Information Research,
7(2). Retrieved June 2003, from http://InformationR.net/ir/7-2/
paper126.html

Zobel, J. & Dart, P. (1995) Finding approximate matches in large lexicons.
Software—Practice and Experience, 25(3), 331–345.

